главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика
Волоконная оптика /
  Распространение света в оптоволокне
  Волоконная оптика. Основные понятия
  Окна прозрачности оптического волокна
  Числовая апертура оптоволокна
  Потери в оптоволокне
  Оптические волноводы
  Профили показателя преломления оптоволокна
  Связь мод (mode coupling) в оптоволокне
  Изготовление и структура оптоволокна
  Волоконные лазеры и усилители
  Приборы и устройства на основе оптоволокна
  Оптоволоконная связь
  Комплектующие и оборудование для работы с оптоволокном
Спектроскопия
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Многомодовое оптоволокно

Перевод Анны Мотуш

Определение: волокна, поддерживающие более чем одну моду для определенного направления поляризации

Многомодовые волокна - это оптические волокна, поддерживающие несколько поперечных мод для данной оптической частоты и поляризации. Число мод определяется длиной волны и показателем преломления материала. Многомодовые волокна подразделяются на волокна со ступенчатым профилем показателя преломления и градиентные.

Для волокон определены значения радиуса сердцевины и числовой апертуры, позволяющие определить V-параметр. Для больших значений V-параметра количество мод пропорционально V2. В частности, для волокон с большим диаметром сердцевины (правая часть рис 1), количество мод может быть очень большим. Такие волокна могут доставлять свет с плохим качеством пучка (например, генерируемый мощными диодами), но для сохранения качественного луча от источника света с высокой яркостью будет лучше использовать волокно с меньшей сердцевиной и с умеренной числовой апертурой, хотя эффективное введение излучения в волокно может быть более сложным.
По сравнению со стандартным одномодовым волокном, многомодовое волокно обычно имеет большую сердцевину, а также высокую числовую апертуру, например, 0.2-0.3. Последнее позволяет  работать при изгибании волокна, но также приводит к более интенсивному рассеиванию, которое  определяется нарушением геометрической формы оптического волокна. Следствием этих нарушений является то, что часть лучей покидает оптоволокно. Интенсивность рассеивания зависит не только от качества материала, из которого изготавливается сердцевина, но и от качества оболочки, так как часть оптического сигнала распространяется и в ней. Профиль показателя преломления в основном прямоугольный, но иногда встречается и параболический. (См. ниже).
Многомодовое волокно состоит из сердцевины и оболочки. В распространенных типах волоконно-оптических линий связи (см. ниже) на основе многомодовых волокон 50/125 и 62,5/125, диаметр сердцевины равен 50 и 62.5 микрон соответственно и диаметр оболочки 125 микрон. Такие волокна поддерживают сотни мод.
Ввести  свет в многомодовое волокно достаточно просто, т.к. требования к соблюдению точности настройки угла и положения луча не очень строгие. С другой стороны, пространственная когерентность на выходе многомодовых волокон невелика, и распределение интенсивности излучения на выходе сложно контролировать по причинам, изложенным ниже.
 
На рисунке 2 приведены профили электрического поля в модах с шагом преломления  волокна, рассчитанные для конкретной длины волны. Это основная мода (LP01) с распределением интенсивности, близким к гауссовскому, и несколько мод более высокого порядка с более сложными пространственными профилями. Каждая мода имеет различную постоянную распространения . Любое распределение поля можно рассматривать как суперпозицию мод.
Суммарное электрическое поле, распространенное в многомодовом волокне – суперпозиция нескольких мод. Интенсивность зависит не только от оптической мощности  во всех модах, но также и от относительной  фазы, тут может возникать максимум или минимум за счет интерференции различных мод.
Оба параметра - мощность и фаза, определяются начальными условиями, а относительные фазы изменяются непрерывно вдоль волокна из-за зависимости от констант распространения. Таким образом, сложная картина интенсивности во времени постоянно меняется в пределах длины распространения значительно меньше 1 мм.
 
Рисунок 3 демонстрирует анимированный пример, где представлены распределения интенсивности, происходящие с интервалом в 2 мкм. Эта интерференционная картина сильно зависит от каких-либо изменений при изгибе или растяжении волокон, а также от температуры.

 Обратите внимание, что для света с широкой оптической пропускной способностью (например, для белого света) таких сложных распределений интенсивности не наблюдается потому, что график интенсивности различен для каждой длины волны, так что вклады от различных длин волн усредняются. Чем длиннее волокно, тем ниже оптический диапазон частот, необходимый для этого усреднения.

По материалам интернет-энциклопедии www.rp-photonics.com
Многомодовые волокна  для доставки лазерного излучения Многомодовые волокна для доставки лазерного излучения

Многомодовые волокна для оптической связи Многомодовые волокна для оптической связи

Активные многомодовые волокна Активные многомодовые волокна

Материалы и изготовление Материалы и изготовление

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

 
         
 
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru